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Abstract

The standard Diamond-Mortensen-Pissarides (DMP) labor search model generates
low volatility in labor market variables relative to average labor productivity (ALP),
the so-called Shimer puzzle. Hagedorn and Manovskii (2008) demonstrate that recali-
brating the standard DMP model to be consistent with the small vacancy posting cost
and wage elasticity observed in the data can resolve the Shimer puzzle. They close
by stating that their calibration strategy would also resolve the Shimer puzzle in the
real business cycle (RBC) search framework. In this paper, we examine their claim
and find that their strategy resolves the Shimer puzzle in the RBC search model for
linear preferences (with risk neutrality and infinite Frisch elasticity of labor supply),
but falls significantly short for more standard assumptions on the degree of relative risk
aversion (of 1-2) and Frisch elasticity (of 2-3), in line with empirical estimates. While
our conclusions are based on highly accurate solutions using the Generalized Stochas-
tic Simulation Algorithm (GSSA), we also assess the accuracy of a frequently used
linearization method and its implications for the assessment of labor market volatility.
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1 Introduction

The Shimer puzzle, or the observation that the standard Diamond, Mortensen, and Pissarides

(DMP) labor market search model fails to match the high volatility of labor market variables

(vacancies, unemployment, and their ratio, labor market tightness) relative to average labor

productivity (ALP) that is observed in the U.S. data is well known.1 Shimer (2005) notes

that in the DMP search model, wages tend to absorb fluctuations in productivity leading to

small adjustments in vacancies and unemployment over the business cycle. Real Business

Cycle (RBC) search models (RBC models with DMP search friction) inherit this lack of

labor market volatility (see Andolfatto, 1996; Merz, 1995; Shimer, 2005; and Hagedorn and

Manovskii, 2008).

Shimer (2005), Hall (2005), Hall and Milgrom (2008), and Pissarides (2009) show that

introducing wage stickiness in the standard DMP framework can resolve the Shimer puzzle.2

Hagedorn and Manovskii (2008) (HM) propose an alternative solution that simply involves

recalibrating the DMP model. We show that while the HM calibration resolves the Shimer

puzzle in the extended RBC search model when preferences are linear, as they are in the

standard DMP model, this is not the case once agents are risk averse. In addition, there

is a further deterioration of the model’s predictions when the agents’ Frisch elasticity of

labor supply is made finite. These findings suggest that the success of the HM calibration

was driven, in part, by the assumption of linear preferences embedded in the DMP model.

Given the non-linearities (in the utility function and production function) inherent in the

modifications of the standard DMP model needed to place it in the RBC framework, we

approximate a solution to our model nonlinearly. Specifically, we employ the Generalized

Stochastic Simulation Algorithm (GSSA) described by Judd et al (2011) and Maliar and

Maliar (2014) to obtain a nonlinear approximation, and we demonstrate that this approxi-

mation yields a highly accurate solution, according to the DM-statistics test (see den Haan

and Marcet, 1994).

Prior to HM, a standard calibration of the DMP model would set worker’s bargaining

power to either yield a symmetric Nash bargain or to satisfy the Hosios criteria for the

1See Diamond (1982), Mortensen and Pissarides (1994) and Pissarides (1985) for details of the DMP
model and Shimer (2005) for a discussion of the Shimer puzzle.

2Hall and Milgrom (2008) introduce periodic renegotiation costs into the wage bargaining problem to
calibrate the degree of wage stickiness required to match the data. Pissarides (2009) offers an alternative
approach by suggesting that Nash bargaining on new hires only (which he finds to be consistent with the
data) along with the addition of a fixed cost to hiring can match both the wage elasticity and the labor
market tightness elasticity with respect to productivity.
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Pareto optimality of the decentralized solution, and set the disutility of work to target the

replacement ratio observed in the data. With worker’s bargaining power and disutility of

work pinned down, vacancy posting costs and the matching function parameter would be

set to target the average values for the job finding rate and labor market tightness that are

found in the data.3 HM disagree with this procedure as it ignores the size of vacancy posting

costs and the elasticity of wages with respect to average labor productivity, which are both

found to be very small in the data.

HM state that the primary issue with the standard calibration is its failure to match the

small vacancy posting costs observed in the data. In DMP models, firms pay workers less

than their marginal products in order to recoup their vacancy posting costs. As such, firms

earn period-by-period accounting profits whose size is determined by the size of the vacancy

posting costs present in the model. The central idea behind the HM calibration is that

these profits should be small and they should fluctuate significantly in percentage terms at

business cycle frequencies. Large percentage fluctuations in firm’s accounting profits give rise

to strong incentives to adjust vacancy creation, leading to large movements in unemployment

and labor market tightness. In order to capture the small and volatile accounting profits,

HM sets vacancy posting costs to a small level that is consistent with the data, and they

set worker’s bargaining power to target the elasticity of wages with respect to average labor

productivity. With these two values pinned down, the disutility of work and the matching

function parameter are set to target the average value of the job finding rate and labor market

tightness found in the data. This calibration strategy yields a value for the replacement ratio

of 0.96.4.

The HM calibration succeeds in increasing the relative volatility of labor market variables

to realistic levels in the DMP model. However, the DMP model is special – it assumes risk

neutral agents, constant disutility of labor (or equivalently, an infinite Frisch elasticity),

and a production process that is linear in labor. HM close their paper by stating that

their calibration strategy will also resolve the Shimer puzzle in the more general RBC search

framework, where agents are typically risk averse and the production process includes capital

as an additional input. In this paper, we put this claim to the test by implementing the HM

calibration strategy in a fully specified RBC search model using a standard Cobb-Douglas

3This calibration procedure is very similar to that outlined in Shimer (2005).
4Many researchers question the plausibility of such a high replacement ratio (See Hornstein et al (2005),

Mortensen and Nagypal (2007), and Costain and Reiter (2008)). For this paper we will assume that a
replacement rate close to 1, implied by HM calibration, is acceptable and focus on the performance of their
calibration within the RBC search model.
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production function and a variety of commonly used utility specifications. In order to ensure

an accurate approximation, we use the Generalized Stochastic Simulation Algorithm (GSSA)

to solve our model nonlinearly. However, as there is currently an open debate regarding the

importance of numerical accuracy in models with labor market search frictions (see Petrosky-

Nadeau and Zhang, 2016 and Lan, 2017), we also solve a linear approximation to our model.

While we find that this linearized solution fails the accuracy test based on DM-statistics,

the basic conclusions are consistent across solution methods.

We find that while the HM calibration significantly amplifies the volatility of labor market

variables relative to average labor productivity (ALP) for the various utility specifications, it

is able to match the data and resolve the Shimer puzzle only when one assumes that agents

are risk neutral. Increasing the degree of relative risk aversion to unity (which is at the

lower end of the range used in most RBC studies), sharply reduces labor market volatility

under the HM calibration. The heightened consumption-smoothing behavior reduces the

intertemporal elasticity of substitution in consumption and renders the consumption-savings

decision less responsive to productivity shocks thereby mitigating the demand for labor by

firms. Maintaining a low wage elasticity with respect to average labor productivity coincides

with a weaker employment response. Thus, our results indicate that the success of the HM

calibration in resolving the Shimer puzzle is at least partially dependent on the assumption

of risk neutrality embedded in the standard DMP model. A similar effect results when

the Frisch elasticity is lowered to values generally in accord with macro estimates. These

results suggest that if one is interested in resolving the Shimer puzzle within an RBC search

model under conventional values of risk aversion and Frisch elasticity, the HM calibration

may get you closer to the data, but additional amplification mechanisms, such as financial

frictions, are needed. (See Atolia, Gibson, Marquis, 2015). Lastly, we find that while the

GSSA approximation is much more accurate than the linearized solution in terms of Euler

residuals and DM-statistics, the main conclusions derived from the model remain unchanged.

2 Model

The model is a standard Real Business Cycle (RBC) model that has been modified to include

a basic labor market search friction. This structure is similar to that presented in Merz (1995)

and Andolfatto (1996), but some details have been adjusted to maintain a tight connection

with Hagedorn and Manovskii (2008) (HM).
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2.1 Labor Market

There is a continuum of workers of unit mass within the household that are either employed,

n, or unemployed, 1− n. Workers are insulated from the consumption risk associated with

unemployment spells through their membership in this multi-member household. Employed

workers supply labor to firms at the bargained wage, w, while unemployed workers search for

work. Firms post vacancies, v, at flow cost g each period in order to expand their workforce.

New matches, m, are determined by the following matching function:

m =
v(1− n)

((1− n)γ + vγ)
1
γ

, γ ∈ (0, 1) (1)

where this functional form has been chosen to retain comparability with HM.

Labor market tightness, Φ, the job finding rate, f , and the vacancy filling rate, q, are

given by:

Φ =
v

1− n
(2)

f =
m

1− n
(3)

q =
m

v
(4)

Separations occur exogenously at rate x, so that the evolution of labor is given by:

n′ = (1− x)n+m, x ∈ (0, 1) (5)

2.2 Household’s Problem

Households derive utility from consumption, c, and disutility from work, n. They choose

consumption and next-period capital, k′, to maximize the present discounted value of lifetime

utility, taking the wage rate, w, the rental rate on capital, r, and the job finding rate, f , as

given. The household’s problem can be stated as the following dynamic program:

V (k, n; θ) = max
c,k′
{U(c, n) + βE [V (k′, n′; θ′)]} (6)

s.t.

c+ k′ − (1− δ)k ≤ wn+ rk (7)

n′ = (1− x)n+ f(1− n) (8)
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where β denotes the household’s discount factor, θ denotes an exogenous aggregate produc-

tivity shock, equation (7) is the household’s budget constraint, and equation (8) governs the

evolution of employment from the point of view of the household.

Solving the household’s problem yields the following dynamic equations:

βE

[
Uc′

Uc
[r′ + 1− δ]

]
= 1 (9)

Vn = Ucw + Un + β(1− x− f)E [Vn′ ] (10)

Equation (9) is the standard capital Euler equation and equation (10) is the marginal

value of an additional employed worker to the household.

2.3 Firm’s Problem

The firm combines capital, k, and labor, n, to produce output, y, using the following tech-

nology:

y = θkαn1−α (11)

where the exogenous aggregate productivity shock, θ, evolves according to:

ln θ′ = ρθ ln θ + ε′θ (12)

with ε′θ ∼ N(0, σ2
ε ) and ρθ ∈ (0,1).

Firms rent capital and post vacancies to maximize the present discounted value of lifetime

profits based on household preferences taking the wage rate, w, the rental rate on capital,

r, the cost of posting a vacancy, g, and the vacancy filling rate, q, as given. Their problem

can be stated as the following dynamic program:

J(n; θ) = max
k,v

{
θkαn1−α − wn− rk − vg + βE

[
Uc′

Uc
J(n′; θ′)

]}
(13)

n′ = (1− x)n+ qv (14)

where equation (14) is the evolution of employment from the point of view of the firm.
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Solving the firm’s problem yields the following optimality conditions:

r = αθ

(
k

n

)α−1

(15)

g

q
= βE

[
Uc′

Uc
Jn′

]
(16)

Jn = (1− α)θ

(
k

n

)α

− w + (1− x)
g

q
(17)

Equation (15) determines the rental rate, equation (16) is the firm’s vacancy creation

condition, and equation (17) is the marginal value of an additional worker to the firm.

2.4 Wage Bargain

Wages are set through Nash bargaining over the total surplus generated by a successful

match. Typically, one defines total surplus, S, as the value of an additional employed worker

to the household, Vn, plus the value of an additional employee to the firm, Jn. However in

our case, Vn is in terms of utils while Jn is in terms of good. To deal with this issue simply

define J̄n = UcJn and S = Vn + J̄n. Now, wages are set by solving the following problem:

max
Vn,J̄n

V b
n J̄n

1−b

s.t.

S = Vn + J̄n

where b is the worker’s bargaining power.

Solving this problem yields:

(1− b)Vn = bJnUc (18)

One can use equations (10), (17), and (18) to derive a reduced-form wage equation:

w = −Un
Uc

+ b

(
(1− α)θ

(
k

n

)α

+ Φg +
Un
Uc

)
(19)

2.5 Market Clearing and Equilibrium Conditions

The goods market clearing condition is given by:

c+ k′ − (1− δ)k + vg = θkαn1−α (20)
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Once one derives equation (19) and substitutes an updated version of equation (17) into

equation (16), Jn and Vn are redundant to the system. Therefore, the model consists of 10

endogenous variables: m, v, n, Φ, f , q, c, k, w, r and the system of equations that define

the model consists of equations (1)-(5), (9), (15), (16), (19), and (20).

3 Calibration and Computational Methods

This section specifies the utility function that we consider and outlines our calibration

method, which closely mimics that of Hagedorn and Manovksii (2008). This is followed

by a discussion of the methods used to numerically solve the model.

3.1 Utility Function

We restrict our attention to preferences with the following general form:

U(c, n) =
1

1− σ
c1−σ − η 1

1 + 1
ξ

n1+ 1
ξ , σ ≥ 0, ξ > 0 (21)

where σ is the coefficient of relative risk aversion (and the inverse of the elasticity of in-

tertemporal substitution), η is the measure of disutility of work, and ξ is the Frisch elasticity

of labor supply. This is a standard utility specification used in the RBC literature and sub-

sumes many specifications used in labor market search models, for example, those used in

Merz (1995) and Shimer (2010).

Initially, we set σ = 0 and ξ = ∞, which is equivalent to the linear utility function

assumed by HM. We find that the HM calibration still resolves the Shimer puzzle under these

utility parameters. However, these parameter values are highly restrictive as they imply risk

neutral agents who have infinite Frisch elasticity. A more reasonable parameterization, from

an RBC perspective, would allow for plausible values of risk aversion and (finite) Frisch

elasticity. We resolve the model under a variety of utility parameterizations and find that

the HM calibration’s ability to resolve the Shimer puzzle depends crucially on the specific

values of utility parameters σ and ξ that are chosen.

3.2 Calibration Procedure

In order to maintain consistency with HM, we set our model’s period length to 1
12

of a

quarter, or approximately one week. Following the RBC literature, we set the discount rate,
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β, to 0.99
1
12 , which implies an annual risk free rate of approximately 4%. Also following

convention, we set capital’s share of output, α, equal to 1
3
.5 As for the depreciation rate of

capital, we set δ = 0.025
12

, implying an annual depreciation rate of 10%. This value of δ allows

our model to match our target capital-output ratio of 2.20 which is consistent with the U.S.

economy over the sample period 1970-2015.6

To ensure comparability with the HM calibration, the exogenous separation rate, x, is

set to 0.0081. For the same reason, the utility parameters, σ and ξ are initially set to 0 and

∞, although other combinations of σ and ξ are also used for sensitivity analysis. At this

point we have values for σ, ξ, β, δ, x, and α, but we still need values for g, σε, ρθ, γ, η, and

b. Following HM, vacancy posting costs at time t are given by:

gt = 0.474

(
yt
nt

)
+ 0.11

(
yt
nt

)0.449

(22)

where the coefficients represent the estimates of the capital and labor share of vacancy

costs respectively, and the exponent is added to capture the sluggishness in the response of

wages to ALP.7 With the equation for g specified, we proceed to set the values for the five

remaining parameters (σε, ρθ, γ, η, and b) so that our model matches the five remaining

targets proposed by HM. These five targets are: (i) volatility of ALP of 1.3%, (ii) first-order

autocorrelation of ALP of 0.765, (iii) average labor market tightness of 0.634, (iv) average

job finding rate of 0.139, and (v) the elasticity of wages with respect to ALP of 0.449.8 Note

that this part of the calibration is repeated for each of the different combinations of σ and

ξ reported in Tables 1 and 2. The two tables provide a complete list of parameter values

for the different (σ, ξ) combinations that we use. Note that the parameter values are nearly

identical between specifications and across the two alternative approximation methods that

we wish to compare. The next section describes these two approximation methods.

5In RBC search models that employ a Cobb-Douglas production function, α is still capital’s share of
output, but 1 − α is no longer labor’s share. This is because vacancy costs come out of labor’s share.
However, it is still close to 1 − α because under the HM calibration, vacancy costs are very small—of the
order of 1 to 2 percent of GDP.

6The capital-output ratio is defined as the ratio of Current Cost Net Stock of Private Fixed Assets to
GDP as in Evans (2000) and, although we also include more recent data, our value is almost the same as
what he reports in his Figure 2.

7The inclusion of capital in our model does not alter the vacancy posting costs described in HM. However,
ALP is no longer normalized to 1.

8These targets are taken directly from HM and can be found in Tables 1 and 3 of their paper.
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3.3 Computational Methods

It is customary in the literature to solve labor market search models by using (log) lineariza-

tion. However, as discussed in more detail in the next section, recent work has suggested

that the model-implied second moments obtained from labor search models may be highly

sensitive to the accuracy of approximation. In light of this, we use the highly accurate Gen-

eralized Stochastic Simulation Algorithm (GSSA) proposed by Judd et al (2011) and Maliar

and Maliar (2014) to solve our model. A third-order approximate solution computed using

GSSA passes the DM-statistics test, based on Euler equation residuals, as proposed by den

Haan and Marcet (1994). However, with a view of providing further evidence to inform the

debate on the importance of accurately approximating labor search models, we also solve a

linear approximation of our model using the method of undetermined coefficients outlined

in Christiano (2002) and assess its accuracy using the DM-statistics test.

3.3.1 Generalized Stochastic Simulation Algorithm

GSSA is a generalization of the parameterized expectations algorithm (PEA) proposed by

den Haan and Marcet (1990) where the approximating function is chosen from a family of

orthogonal polynomials and accurate quadrature techniques replace single-node Monte Carlo

integration when evaluating conditional expectations.9 In principle, both GSSA and PEA

can be used to approximate the solution to our model with an arbitrary accuracy: They

do not suffer from the limitations of standard techniques, such as linearization. However,

GSSA is a significant improvement over PEA, as the use of multi-node quadrature integration

versus single-node Monte Carlo integration when evaluating conditional expectations allows

GSSA to achieve a similar degree of accuracy with a much shorter simulation path. In fact,

sans GSSA it would have been hardly possible to accurately solve our model at a weekly

frequency to check the performance of the HM calibration.

For our approximation, we use a third-order Hermite polynomial in the model’s state vari-

ables to approximate the expectation functions and we use 9-node Gauss-Hermite quadrature

to evaluate integrals. In order to pass the DM-statistics test and achieve an acceptable level

of accuracy (as discussed later), we simulate the model for 120,000 periods. While 120,000

periods seems large, this is actually a significant reduction from what would be needed with

9In traditional PEA conditional expectations are evaluated using the next period’s realized shock. This
is equivalent to performing Monte Carlo integration with a single integration node. GSSA replaces this
by evaluating expectations numerically using fixed quadrature techniques. This allows GSSA to achieve a
significantly higher degree of accuracy with fewer simulation periods.
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PEA.10 A Technical Appendix that outlines our computational strategy is available from the

authors upon request.

4 Results

In this section, we present our results in steps. First, we assess the ability of the HM

calibration to resolve the Shimer puzzle in an RBC search model with linear preferences.

This initial specification replicates the utility function assumed by HM. Second, we test

the robustness of our findings to changes in utility parameters. Specifically, we consider

alternative preference specifications that are commonly found in the RBC literature and

allow for risk-aversion (σ significantly greater than zero) and increasing marginal disutility

of labor supply (finite Frisch elasticity). In view of the sensitivity of the results to the

accuracy of the solution methods used, as highlighted in the recent literature, our discussion

of the Shimer puzzle relies on highly accurate results obtained using GSSA. Third, to further

inform the debate on the importance of the accuracy of solution methods, we also present

results from a linear approximation of the model. We formally test the accuracy of both

solution methods and assess the impact of inaccuracies introduced by linearization.

4.1 Resolving the Shimer Puzzle: Linear Preferences as in HM

We start by approximating the solution to our model for linear preferences (σ = 0 and

ξ = ∞) which are equivalent to the preference specification employed by HM. The top

panel of Table 3 presents the empirical targets that need to be met in order to implement

the HM calibration. As for the empirical fit of this specification, our model, approximated

using GSSA, returns values of 15.0, 12.4, and 25.3 for the (percent) volatilities of vacancies,

unemployment and labor market tightness, which are extremely close to the data reported

by HM: 13.9, 12.5, and 25.9. In fact, our results in this RBC framework are actually closer

to the data than the model results reported by HM.

Before discussing the Shimer puzzle further, we must assess the accuracy of our GSSA

solution under our linear preference specification. Results from our accuracy tests can be

found in the column labeled “Linear” in Table 4. The table reports Euler equation residuals

in the first panel and results from a DM-statistics test on the predictability of ex-post errors

10We find that even after doubling the simulation length, PEA is unable to come close to the accuracy
of our GSSA approximation. Thus, for our model, using PEA to obtain an accurate approximation is
prohibitively expensive in terms of computer time.
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in the Euler equations in the second. While our model has two Euler equations, (9) and

(16), we are able to solve equation (9) analytically given the log-normal distribution of θ

when preferences are linear. For this reason, we only have to report the Euler residuals and

DM statistics tests for equation (16) for this preference specification.11 The residuals for

equation (16) are calculated from the time paths of model variables computed using solved

decision rules and a 9-node Gauss-Hermite quadrature approximation of the conditional

expectations. The first panel of Table 4 presents both the root-mean-squared error (MSE)

and the maximum-absolute error (∞-norm) for this residual series. The DM-statistics tests

in the second panel are computed following den Haan and Marcet (1994). For computing

DM-statistics, the solved decision rules are used to simulate 1000 instances of 3100-period

time paths of the model’s variables, with the first 100 periods being used for “burn in.”12

The values reported in the second panel of Table 4 measure the fraction of DM-statistics

that fall above (below) the 95% (5%) critical value. We see that, for linear preferences, (16)

shows small approximation errors. More generally, we note that the GSSA solution passes

the DM-statistics test with approximately 5% of DM-statistics falling within the appropriate

tails uniformly across various specifications considered in Table 4.

In addition to the GSSA solution, which gets very close to data and is highly accurate

as discussed above, in Table 3 we also present results from a frequently used linear approx-

imation. The linearized solution generates significantly higher volatility of labor market

variables, but as expected, fails our DM-statistics test (see first column of Table 6). Specif-

ically, the volatilities increase to 20.16, 17.48, and 34.35 respectively. The results of HM

lie somewhere in between those from the highly accurate GSSA solution and the commonly

used linear approximation. The overall conclusion, therefore, is that the HM calibration

successfully resolves the Shimer puzzle in an RBC search model when agents are assumed

to be risk neutral and to have Frisch elasticity of infinity (i.e., linear preferences).

These results indicate that the HM calibration has the potential to resolve the Shimer

puzzle in a standard RBC search model; however, further analysis is needed. The reason

is the very stark assumption about the preferences on which these results are based. The

general consensus in the macro literature is to put much more curvature in preferences,

which implies some/higher (relative) risk-aversion and lower Frisch elasticity in our utility

11For all other preference specifications, we will have to consider the residuals for both (9) and (16).
Furthermore, this means that the correct DM statistics test will be a joint test of both equations.

12When computing the DM-statistics, we use lagged consumption and lagged productivity as our inde-
pendent variables in the regression step. Therefore, our DM-statistics are distributed χ2 with 2 degrees of
freedom.
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specification. For example, Jung and Kuester (2011) have demonstrated that the volatility

of labor market variables falls as the degree of relative risk aversion rises, suggesting that

once we move to a more realistic utility specification, the HM calibration may fail to resolve

the Shimer puzzle. However, while Jung and Kuester (2011) follow HM and set workers’ bar-

gaining power to target the elasticity of wages with respect to ALP, they do not implement

the HM calibration strategy in totality. Therefore, their findings do not conclusively demon-

strate if, and the extent to which, increasing risk aversion reduces labor market volatility in

an RBC search model under the HM calibration.13

4.2 Resolving the Shimer Puzzle: RBC Preferences

Our previous results indicate that the HM calibration is sufficient to resolve the Shimer

puzzle in an RBC search model with linear preferences. However, this specification is not

consistent with the RBC literature, which typically assumes curvature in preferences. To

assess how increasing curvature (in accordance with RBC/ macro literature) affects the HM

calibration’s ability to resolve the Shimer puzzle, we solve our model under two alternative

values for the coefficient of relative risk aversion: σ = 1 and σ = 2. These values of σ

are widely used in the RBC literature, with σ = 1 (implying log preferences) being used

frequently in analytical work, and σ = 2 being used more often in quantitative exercises.

To further test the effects of additional curvature in preferences, we also consider alterative

values for the Frisch elasticity that are more in accord with the macroeconomic estimates in

the range of 2-3.14 To this end, we solve our model for values of the Frisch elasticity equal

to ∞, 3, and 2 for each of the new values of σ considered, implying a total of six alternative

preference specifications.

Table 4 reports the accuracy of our GSSA approximation for each the six alternative

RBC preference specifications. As mentioned earlier, all specifications pass accuracy test

13We note here that, in a well-executed paper, Lubik (2009) uses Bayesian techniques to estimate an RBC
search model with CES utility after imposing the restriction of infinite Frisch elasticity. He obtains very
low point estimates for both the degree of relative risk aversion (0.72) and worker’s bargaining power (0.03).
While these estimates are consistent with HM, Lubik (2009) includes several additional shocks (to demand,
labor supply, and matching efficiency) for estimation, with shocks to match efficiency serving as the primary
driver of labor market volatility. Therefore, his results do not of themselves offer a theoretical explanation
for resolving the Shimer puzzle, which was the objective of HM and the focus of this paper.

14In their survey of the literature, Reichling and Whalen (2012) suggest a range of 2 to 4. Prominent
examples include Hall (2009), whose calibration exercise produced a macro Frisch elasticity of labor supply
in a sticky-wage model of 1.9 and Rogerson and Wallenius (2009), whose calibration exercises in an OLG
model with labor taxation produced estimates ranging from 2.3 to 3.0. Smets and Wouters (2007) employ
parameter estimation in a DSGE model to obtain a point estimate of 1.9.
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based on DM-statistics. With the accuracy of our GSSA results assured, we turn to Table 5

to determine the ability of the HM calibration to resolve the Shimer puzzle in an RBC search

model with curvature in preferences. Just as in Table 3, the top panel of Table 5 presents the

empirical targets that need to be met in order to implement the HM calibration. A quick

inspection of this table indicates that when the specifications with RBC preferences are

calibrated to match the empirical targets suggested by HM, they do not generate sufficient

labor market volatility.15 While RBC researchers use somewhat different values of σ and ξ,

results in Table 5 show that the failure of the HM calibration to resolve the Shimer puzzle in

an RBC model, with standard preferences exhibiting risk aversion and finite Frisch elasticity,

is a fairly robust outcome. In the most empirically relevant case with σ = 2 and ξ = 3, the

volatilities of vacancies, unemployment, and tightness fall to less than half (50%, 49%, and

48%) of that in data. While a decrease in σ to 1 improves the results (76%, 73%, and 72%),

a decrease in ξ to 2 makes things worse (46%, 45%, and 44%).

Therefore, the HM calibration fails to resolve the Shimer puzzle under a standard prefer-

ence specification for an RBC model with risk-averse agents and finite Frisch elasticity. The

results presented in this section indicate that the success of the HM calibration in resolving

the Shimer puzzle in the standard DMP model was driven, in part, by the underlying as-

sumption of linear preferences embedded in the model. Our sensitivity analysis shows that

the failure of the HM calibration is not a result of a specific set of values a researcher may

prefer. Rather, it is an outcome of the fact that the point estimates for which the HM

calibration works is quite far outside the range of values considered plausible and used in

the RBC literature to match business cycle moments of various macro variables.

Some insight into the reasons for this failure of the HM calibration can be obtained by

combining its low implied value of workers’ bargaining power16 (see Table 2) with the wage

equation, (19) to conclude that w ≈ −Un/Uc. Thus, just as in the case of a traditional RBC

model, workers in our model, with labor search frictions and under the HM calibration,

are on their iso-utility curves in the consumption-labor space (which is the same as their

labor supply curve), albeit in an approximate sense. In particular, for our utility function,

we have w ≈ dc/dn = ηcσn1/ξ and increasing σ or lowering ξ both make iso-utility curves

15It should be noted that the full HM calibration cannot be implemented when σ = 2. Specifically, we still
find that wage elasticity exceeds the empirical target after setting worker’s bargaining power to its minimum
value of 0. While this implies that the full calibration strategy is not used when σ = 2, the wage elasticity
generated by the model is still close to the empirical target. As intuition provided later suggests, a further
reduction in the elasticity of wages with respect to ALP in accordance with the HM calibration would further
reduce labor market volatility.

16In HM, workers’ bargaining power is approximately 0.05.
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more curved in the consumption-labor space. Therefore, a given volatility of wages over

the business cycle generates smaller volatility in c or n, when σ is larger or ξ is smaller.17

As the HM calibration keeps the volatility of wages the same across calibrations, it makes

the ceteris paribus assessment in the previous sentence the actual outcome. Specifically, the

calibration targets the elasticity of wages with respect to ALP (0.449) and volatility of ALP

(1.3 percent), thereby indirectly fixing the volatility of wages across our specifications.

4.3 Accuracy and Implications of Linear Approximation

Currently, there is an open debate regarding the impact of a solution’s accuracy on the

implied second moments in a model with DMP search frictions. Lan (2017) approximates

the solution to an RBC search model under the standard labor market calibration (as in

Shimer, 2005) with a Cobb-Douglas matching function, using both projection and perturba-

tion methods. Lan finds that while the projection method is more accurate in terms of Euler

residuals and DM-statistics, the second moments are not significantly different. However,

Petrosky-Nadeau and Zhang (2016) solve the standard DMP search model under the HM

calibration using similar methods and find that different methods yield significantly different

results. Specifically, they find that once the model is solved more accurately, the HM cali-

bration fails to resolve the Shimer puzzle as it yields an unemployment series that is almost

twice as volatile as that found in the data. As the problem considered in this paper falls

between these two papers—an RBC search model that implements the HM calibration—

our results can potentially shed some light as to why these two papers reach very different

conclusions.

Towards this end, in this section, we systematically explore the accuracy of linear ap-

proximation and its implications across our various specifications. Specifically, we first solve

for the linearized approximation that implements the HM calibration and then assess the

accuracy of our approximation by computing Euler residuals and performing a DM-statistics

test on the predictability of ex-post errors, just as we did for as in the case of the GSSA so-

lution. The results of these tests are presented in Table 6. Comparison of results in the first

panel of Table 6 with the corresponding panel of Table 4 (for GSSA) shows that, with lin-

earization, the root-mean-squared error (RMS) and the maximum-absolute error (∞-norm)

for both Euler equations, (9) and (16), increase by at least an order of magnitude across

all utility specifications. The second panel of Table 6 shows that the linearized solution

17Note that c and n move together as a result of the interrelationship through the goods market clearing
condition.
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spectacularly fails the joint DM-statistics test, with a majority of the DM-statistics falling

in the upper tail. Recall, the GSSA solutions passed the joint test, with approximately 5%

of DM-statistics falling in the appropriate tails. The increased precision found using GSSA

relative to the linear approximation can also be seen in Figures 1 and 2 which present time

paths and histograms for the model’s normalized Euler equation residuals under the RBC

specification with σ = 2 and ξ = 3 (see online appendix for additional details).

4.3.1 Does the Inaccuracy of the Linearized Solution Matter?

Given the magnitude of the Euler residuals and the results of the DM-statistics test, it

is clear that the solution based on our linear approximation is not accurate. But how

does this inaccuracy affect our ability to test whether the HM calibration can resolve the

Shimer puzzle? Table 7 summaries the results from the linearized solution. Comparing

Table 7 with Table 5 indicates that our original conclusion remains. Namely, that while the

HM calibration successfully resolves the Shimer puzzle in an RBC search model with linear

preferences, it is unable to resolve the puzzle in a model with preferences more standard in

the macro literature (e.g., risk averse agents and finite Frisch elasticity). Furthermore, our

results indicate that our model’s second moments are actually slightly larger when the less-

accurate linear approximation is used.18 This is in stark contrast to Petrosky-Nadeau and

Zhang (2016) who reach an opposite conclusion: finding that their more-accurate solution

significantly increases labor market volatility (unemployment is almost twice as volatile)

under the HM calibration. Therefore, our results bolster the claim made by Lan (2017),

suggesting that the accuracy of approximation, while important for statistical fit, has little

impact on the second moments of the model.19

5 Conclusions

This paper applies the calibration strategy proposed by Hagedorn and Manovskii (2008)

(HM) to an RBC search model similar to that proposed by Merz (1995) and Andolfatto

(1996). We find that while the HM calibration significantly amplifies the volatility of vacan-

18This is also reflected in the results presented in Table 3.
19Lan (2017) suggests that the difference with Petrosky-Nadau and Zhang (2016) is due to the choice of

matching functions, whereby Lan allows matches to exceed vacancies in some periods. However, our results
do not support this conjecture, as we adopt the same matching function as Petrosky-Nadau and Zhang
(2016), yet our results favor Lan (2017). The principal difference with our model and the model presented
in Petrosky-Nadeau and Zhang (2016) is the addition of capital in the production function.
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cies, unemployment, and labor market tightness, relative to the standard calibration, it is

not sufficient to resolve the Shimer Puzzle in our benchmark RBC specification. We conduct

sensitivity analysis on the parameters of our utility function and find that the volatility of

labor market variables falls as the coefficient of relative risk aversion rises. Ultimately, we

find that the HM calibration is sufficient to resolve the Shimer puzzle only when one assumes

that agents are risk neutral (σ = 0) and have infinite Frisch elasticity of labor supply. In

addition, relaxing the strict assumption of an infinite Frisch elasticity only serves to deepen

the Shimer puzzle, as volatility in the labor market is reduced further. We also examine the

importance of accuracy of approximation in identifying the relative volatility of labor mar-

ket variables by comparing results from a linear approximation to those from a non-linear

approximation (GSSA). We find that the former dramatically fails a standard accuracy test

based on DM-statistics, whereas the latter passes them. However, both approximation meth-

ods produce second moments for labor market variables that lead to similar conclusion about

the ability of the HM calibration to resolve the Shimer puzzle.

The results of the paper demonstrate the inability of HM’s calibration strategy to resolve

the Shimer Puzzle for a typical calibration of the RBC search model. While the Frisch elas-

ticity matters, the principal contributor to this failure is the degree of relative risk aversion

normally present in RBC models. Specifically, we find that only if one is willing to assume

risk-neutrality will the HM calibration come close to resolving the Shimer Puzzle in the RBC

search model. We conclude from our results that if one is interested in matching the second

moments of labor market variables within an RBC search model with risk-averse agents,

additional features or amplification mechanisms (such as financial frictions) would need to

be considered.
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Figure 1: Euler Residuals: Time Paths (σ = 2 and ξ = 3)
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Figure 2: Euler Residuals: Histogram (σ = 2 and ξ = 3)
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Table 1: Non-Adjusted Parameter Values

Parameters α β δ x g
Valuesa 0.3333 0.9992 0.0021 0.0081 5.3794

a The parameter values listed above are defined as fol-
lows: α ≡ capital’s share of output; β ≡ subjective
discount factor; δ ≡ depreciation rate of capital; x ≡
exogenous separation rate; g ≡ vacancy posting cost.

Table 2: Adjusted Parameter Values

Linear RBC

σ = 0 σ = 1 σ = 2

Parametersa ξ =∞ ξ =∞ ξ = 3 ξ = 2 ξ =∞ ξ = 3 ξ = 2

GSSA

ρθ 0.9895 0.9916 0.9910 0.9909 0.9899 0.9898 0.9896
σε 0.0022 0.0037 0.0037 0.0037 0.0036 0.0036 0.0035
b 0.0475 0.0213 0.0073 0.0005 0.0000 0.0000 0.0000
γ 0.4040 0.4035 0.4030 0.4025 0.4050 0.4025 0.4025
η 6.7215 0.9102 0.9347 0.9472 0.1233 0.1255 0.1266

Linear Approximation

ρθ 0.9895 0.9915 0.9911 0.9908 0.9899 0.9898 0.9896
σε 0.0022 0.0037 0.0037 0.0036 0.0036 0.0036 0.0035
b 0.0312 0.0200 0.0073 0.0009 0.0000 0.0000 0.0000
γ 0.4125 0.4048 0.4025 0.4035 0.4085 0.4050 0.4025
η 6.8235 0.9106 0.9342 0.9458 0.1227 0.1250 0.1263

a The parameter values listed above are defined as follows: ρθ ≡ persistence
of TFP; σε ≡ volatility of innovation in TFP; b ≡ worker bargaining power;
γ ≡ matching function parameter; η ≡ weight on labor in utility function.
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Table 3: Simulation Results for Linear Preferences

Data HM GSSA Linear

Calibration Targets

Wage Elasticity 0.449 0.449 0.449 0.450
Mean f 0.139 0.139 0.138 0.138
Mean θ 0.634 0.634 0.633 0.635
std(ALP) 1.300 1.300 1.300 1.300
Autocorr ALP 0.765 0.765 0.765 0.765

Second Moments

std(v) 13.900 16.900 15.008 20.161
std(u) 12.500 14.500 12.423 17.484
std(Φ) 25.900 29.200 25.299 34.351
corr(v,u) -0.977 -0.724 -0.703 -0.658
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Table 4: Accuracy Check for Linear and RBC Preferences: GSSA Approximation

Lineara RBC

σ = 0 σ = 1 σ = 2

ξ =∞ ξ =∞ ξ = 3 ξ = 2 ξ =∞ ξ = 3 ξ = 2

Accuracy Measure Euler Residuals

Eq. 9 (RMS) - 3.78e-8 3.05e-8 2.62e-8 3.62e-7 1.70e-7 1.16e-7
Eq. 9 (∞-norm) - 2.20e-6 1.65e-5 1.86e-6 7.04e-6 2.39e-6 1.56e-5

Eq. 16 (RMS) 4.79e-6 6.87e-6 8.72e-6 9.60e-6 3.21e-5 1.80e-5 1.37e-5
Eq. 16 (∞-norm) 1.40e-3 4.07e-4 4.18e-4 4.59e-4 3.17e-4 2.82e-4 2.29e-4

DM Statistics

Eq. 9 (DM < Crit) - 0.061 0.057 0.060 0.043 0.045 0.045
Eq. 9 (DM > Crit) - 0.049 0.049 0.049 0.056 0.052 0.053

Eq. 16 (DM < Crit) 0.043 0.062 0.060 0.059 0.056 0.049 0.048
Eq. 16 (DM > Crit) 0.055 0.051 0.052 0.050 0.063 0.057 0.056

Joint (DM < Crit) - 0.051 0.047 0.048 0.044 0.048 0.048
Joint (DM > Crit) - 0.076 0.067 0.064 0.075 0.077 0.074

a Under linear preferences, equation (9) can be solved analytically using the log-normal
property of log θ. Therefore, in this case we only present Euler residuals for equation (16).
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Table 5: Simulation Results for Linear and RBC Preferences: GSSA Approximation

Linear RBC

σ = 0 σ = 1 σ = 2

Data ξ =∞ ξ =∞ ξ = 3 ξ = 2 ξ =∞ ξ = 3 ξ = 2

Calibration Targets

Wage Elasticity 0.449 0.449 0.450 0.447 0.448 0.465 0.529 0.552
Mean f 0.139 0.138 0.139 0.139 0.139 0.138 0.138 0.138
Mean θ 0.634 0.633 0.634 0.633 0.633 0.635 0.635 0.632
std(ALP) 1.300 1.300 1.298 1.297 1.298 1.298 1.300 1.298
Autocorr ALP 0.765 0.765 0.764 0.764 0.764 0.764 0.765 0.765

Second Moments

std(v) 13.900 15.008 11.583 10.615 10.236 8.704 6.988 6.460
std(u) 12.500 12.423 9.967 9.089 8.738 7.670 6.088 5.609
std(Φ) 25.900 25.299 20.235 18.537 17.858 15.347 12.311 11.373
corr(v,u) -0.977 -0.703 -0.763 -0.769 -0.771 -0.757 -0.772 -0.775
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Table 6: Accuracy Check for Linear and RBC Preferences: Linear Approximation

Lineara RBC

σ = 0 σ = 1 σ = 2

ξ =∞ ξ =∞ ξ = 3 ξ = 2 ξ =∞ ξ = 3 ξ = 2

Accuracy Measure Euler Residuals

Eq. 9 (RMS) - 2.97e-6 2.75e-6 2.67e-6 4.46e-6 3.91e-6 3.73e-6
Eq. 9 (∞-norm) - 2.37e-5 2.16e-5 2.07e-5 3.34e-5 3.02e-5 2.92e-5

Eq. 16 (RMS) 8.98e-4 2.82e-4 2.22e-4 2.02e-4 2.96e-4 1.86e-4 1.56e-4
Eq. 16 (∞-norm) 4.10e-3 2.96e-2 2.90e-3 2.50e-3 6.20e-3 3.00e-3 2.20e-3

DM Statistics

Eq. 9 (DM < Crit) - 0.058 0.056 0.056 0.045 0.049 0.049
Eq. 9 (DM > Crit) - 0.077 0.076 0.076 0.088 0.088 0.089

Eq. 16 (DM < Crit) 0.006 0.042 0.052 0.049 0.026 0.028 0.0341
Eq. 16 (DM > Crit) 0.483 0.135 0.099 0.089 0.190 0.176 0.161

Joint (DM < Crit) - 0.000 0.000 0.000 0.000 0.000 0.000
Joint (DM > Crit) - 0.998 0.856 0.594 1.000 1.000 1.000

a Under linear preferences, equation (9) can be solved analytically using the log-normal
property of log θ. Therefore, in this case we only present Euler residuals for equation (16).
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Table 7: Simulation Results for Linear and RBC Preferences: Linear Approximation

Linear RBC

σ = 0 σ = 1 σ = 2

Data ξ =∞ ξ =∞ ξ = 3 ξ = 2 ξ =∞ ξ = 3 ξ = 2

Calibration Targets

Wage Elasticity 0.449 0.450 0.449 0.449 0.449 0.450 0.523 0.548
Mean f 0.139 0.138 0.139 0.139 0.139 0.140 0.139 0.139
Mean θ 0.634 0.635 0.634 0.634 0.634 0.634 0.634 0.634
std(ALP) 1.300 1.300 1.300 1.299 1.300 1.299 1.299 1.300
Autocorr ALP 0.765 0.765 0.765 0.765 0.765 0.765 0.765 0.765

Second Moments

std(v) 13.900 20.161 12.222 11.069 10.644 9.495 7.477 6.786
std(u) 12.500 17.484 10.628 9.543 9.191 8.873 6.770 6.064
std(Φ) 25.900 34.351 21.395 19.323 18.623 17.024 13.315 12.035
corr(v,u) -0.977 -0.658 -0.751 -0.755 -0.757 -0.716 -0.746 -0.753
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